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Let L/k be a finite Galois extension of fields with Galois group
G = Gal(L/k). The original statement of Hilbert’s Theorem 90
says that if G = 〈σ〉, then an element x ∈ L has norm

N(x) =

|G|∏
i=1

σi(x) = 1,

if and only if,

x =
σ(y)

y
, for some y ∈ L.
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A generalization in terms of cohomology was found by Emmy
Noether. In cohomological language, Hilbert’s Theorem 90 states
that

H1(Gal(L/k),U(L)) = 0,

for any finite Galois extension of fields L/k.

An extension of this result to the context of Galois extension of
commutative rings was obtained in

AG The Brauer group of a commutative ring. Trans. Amer.
Math. Soc. (1960) 52: 367-409.

Theorem

Let S be a Galois extension of R relative to G. If every finitely
generated projective R-module of rank one is free, then
H1(G,U(S)) = (0).
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The purpose of this talk is to extend the Theorem above to the
context of Partial Galois extensions.
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Partial Galois theory

DFP M. Dokuchaev, M. Ferrero, A. Paques, Partial actions and
Galois theory, J. Pure Appl. Algebra (2007) 208: 77-87.

Let α = (Dg, αg)g∈G be a unital partial action of a finite group
G on a commutative ring R, and write

Dg = R1g, 12
g = 1g, g ∈ G.

The subring of invariants of R under α is

Rα = {r ∈ R |αg(r1g−1) = r1g, for all g ∈ G}.
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The ring extension R/Rα is called an α-partial Galois extension,
if for some m ∈ N there exists a subset {xi, yi | 1 ≤ i ≤ m} of R
such that

m∑
i=1

xiαg(yi1g−1) = δ1,g, g ∈ G.

The set {xi, yi | 1 ≤ i ≤ m} is called an α-partial Galois coordi-
nate system.
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Given a unital partial action α = (Dg, αg)g∈G one may define the
partial skew group ring , which is the abelian group

R ?α G =
⊕
g∈G

Dgδg,

where the δg’ s are symbols.

The multiplication in R ?α G is induced by

(rgδg)(thδh) = rgαg(th1g−1)δgh.

Then there is a ring monomorphism

R 3 r ι7→ rδ1 ∈ R ?α G,

and we can assume R ⊆ R ?α G via ι.
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For any R ?α G-module M we denote

MG = {m ∈M | (1gδg)m = 1gm, for all g ∈ G}.

Then

Theorem (DFP)

The following statements are equivalent.

R/Rα is a partial Galois extension;

R is a f.g projective Rα-module and the map
µ : R⊗Rα MG →M, given by

µ(x⊗Rα m) = xm, for all x ∈ R, m ∈M

is an isomorphism of R-modules.
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Partial cohomology of groups

We recall form

DK M. Dokuchaev, M. Khrypchenko, Partial cohomology of
groups, arXiv:1309.7069.

Definition

Let R be a commutative ring, n ∈ N, n ≥ 1 and α = (Dg, αg)g∈G
an unital partial action of G on R. A n-cochain of G with
values in R is a function f : Gn → R, such that

f(g1, . . . , gn) ∈ U(R1g11g1g2 . . . 1g1g2...gn),

A 0-cochain is an invertible element of R.
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Denote

Cn(G,α,R) = {f : Gn → R | f is an n-cochain}.

It is an abelian group under point-wise multiplication. Its identity
is

Gn 3 (g1, g2, . . . , gn) 7→ 1g11g1g2 · · · 1g1...gn ∈ U(R1g11g1g2 . . . 1g1g2...gn).
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Definition (The coboundary operator)

For any f ∈ Cn(G,α,R) and g1, . . . , gn+1 ∈ G set
(δnf)(g1, . . . , gn+1) =

αg1

(
f(g2, . . . , gn+1)1g−1

1

) n∏
i=1

f(g1, . . . , gigi+1, . . . , gn+1)(−1)i

f(g1, . . . , gn)(−1)n+1
.

Here the inverse elements are taken in the corresponding ideals.
If n = 0 and r ∈ U(R) = C0(G,α,R), we set

(δ0r)(g) = αg(1g−1r)r−1, for all g ∈ G.
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Proposition (DK)

δn : Cn(G,α,R)→ Cn+1(G,α,R), is a homomorphism such that

(δn+1δnf)(g1, g2, . . . , gn+2) = 1g11g1g2 . . . 1g1g2...gn+2 ,

for any f ∈ Cn(G,α,R).

It follows that for every n ∈ N, n ≥ 1 one has

ker δn ⊇ im δn−1.
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Definition

We define the groups

Zn(G,α,R) = ker δn, of partial n-cocycles.

Bn(G,α,R) = im δn−1, partial n-coboundaries.

Hn(G,α,R) =
ker δn

im δn−1
, partial n-cohomologies.

For n = 0 we define H0(G,α,R) = Z0(G,α,R) = ker δ0.
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The first partial cohomology group

For example, H1(G,α,R) =
Z1(G,α,R)

B1(G,α,R)

and

H1(G,α,R) =
{f ∈ C1 | f(gh)1g = f(g)αg(f(h)1g−1), ∀g, h ∈ G}
{f ∈ C1 | f(g) = αg(r1g−1)r−1, for some r ∈ U(R)}

.
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The Picard group of a commutative ring

Let S be a commutative ring and P be a f.g.p S-module. It is
known that for any p ∈ SpecS, the localization

Pp = P ⊗S Sp

is a f.g free Sp-module.

Then

Pp
∼= S

np
p as Sp-modules, for some np ∈ N.

Thus we get a function ϕP : SpecS 3 p 7→ np ∈ N.

When ϕP = 1, that is Pp
∼= Sp, for all p ∈ SpecS, we say that P

has rank 1, and write rkS(P ) = 1.
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Now let
Pic(S) = {[P ] | rkS(P ) = 1}.,

where

[P ] = {M ∈ SMod |M ∼= P as S-modules},

is the isomorphism class of a module P.

The set Pic(S) is an abelian group, by the operation

[P ][Q] = [P ⊗S Q].

The identity in Pic(S) is [S].

[P ]−1 = [P ∗], where P ∗ = HomS(P, S).
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Hilbert’s Theorem 90 for partial actions

Theorem

Let α be a unital partial action of a finite group G on a
commutative ring R. Suppose that R/Rα is a partial Galois
extension and Pic(Rα) = (0), then H1(G,α,R) = 0.

Remark

Some rings with trivial Picard group are:

semi-local rings,

local rings,
fields,
finite rings.
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The Theorem above is a consequence of the following.

Proposition

Let α be a unital partial action of a finite group G on a
commutative ring R. Suppose that R/Rα is a partial Galois
extension. Then there is a group monomorphism
H1(G,α,R)→ Pic(Rα).

Sketch of the Proof. Let f ∈ Z1(G,α,R), we define a R ?αG-
module Rf by

Rf = R as sets,

(rgδg) · r = rgf(g)αg(r1g−1), for any r ∈ R, g ∈ G.

Notice that Rf = R also as R-modules.
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Sketch of the Proof. (continuation) Since R/Rα is a partial
Galois extension, there is a R-module isomorphism

R⊗Rα RGf ∼= Rf = R. (1)

Using that R is a f.g projective Rα-module and (1) one concludes
that RGf is a f.g projective Rα-module and rkRα(RGf ) = 1.

From this one gets a map

ϕ : H1(G,α,R) 3 cls(f)→ [RGf ] ∈ Pic(Rα),

which is the desired monomorphism.
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Hilbert’s 90 for partial actions

If Pic(Rα) = 0, we have an exact sequence

0 −→ H1(G,α,R) −→ 0.

Which implies
H1(G,α,R) = 0,

and we have our version of Hilbert’s 90.
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